
VIRUS BULLETIN www.virusbtn.com

1010101010 OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003

WORM WARSWORM WARSWORM WARSWORM WARSWORM WARS
Peter Ferrie, Frédéric Perriot and Péter Ször
Symantec Security Response, USA

Around 1966 Robert Morris Sr., the future NSA chief
scientist, decided to create a new game environment with
two of his friends, Victor Vyssotsky and Dennis Ritchie.
They coded it for the PDP-1 at Bell Labs, and named their
game ‘Darwin’. Later ‘Darwin’ became ‘Core War’, a
computer game played to this day by many programmers
and mathematicians as well as hackers.

The object of the game is to kill your opponents’ programs
by overwriting them. The original game is played between
two programs written in the Redcode language, a form of
assembly language. The warrior programs run in the core of
a virtual machine called MARS (Memory Array Redcode
Simulator). The fight between the warrior programs was
referred to as Core Wars.

Well, the world used to be a better place with the fights
between genies in a bottle. Who let the worms out?

INSTINSTINSTINSTINSTALLAALLAALLAALLAALLATIONTIONTIONTIONTION
When Win32/Welchia first runs on a machine, it checks for
the presence of a mutex called ‘RpcPatch_Mutex’, and
aborts if the mutex already exists, in order to avoid running
multiple instances of itself.

After creating its mutex, Welchia creates two services, one
for the worm itself, configured to start automatically, and
one for a TFTP server used during replication, configured to
start manually. The service display names are ‘WINS
Client’ and ‘Network Connections Sharing’, and the worm
attempts to assign their descriptions from the legitimate
‘Computer Browser’ and ‘Distributed Transaction
Coordinator’ services, respectively. The service executables
are located in the %system%\wins directory and named
DLLHOST.EXE and SVCHOST.EXE.

When started as a service, Welchia registers a basic service
handler procedure with the Service Control Manager. (The
handler procedure is kind enough to honour the STOP
control requests, which makes it easy to stop the worm
process on infected machines.)

BLASTER-BOMBERBLASTER-BOMBERBLASTER-BOMBERBLASTER-BOMBERBLASTER-BOMBER
Welchia attempts to remove Win32/Blaster.A from the
machines it infects. More precisely, it kills any ‘msblast’
process by name (regardless of the extension, and the
process name comparison is case-insensitive), and it deletes
from the system directory any file named ‘msblast.exe’

VIRUS ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

1111111111OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003

(after stripping from it a possible read-only attribute). This
‘cleaning process’ takes place immediately before the worm
starts attacking new hosts, and periodically at the end of
every infection cycle.

Welchia also checks for and attempts to install the
MS03-026 patch for the RPC DCOM vulnerability on
systems whose code page and locale match one of the
following: China, Korea, Japan, Taiwan or US English. It
duly reboots the machine after installing the patch.

By virtue of this curative effect, Welchia has been deemed
by some to be a ‘good worm’. This term is arguable for
many reasons (incomplete coverage of the patching routine,
unwanted side-effects, lack of control, etc.). The concept of
a ‘good worm’ has been researched repeatedly, with little
success. We would rather call it a ‘jealous worm’.

COMPETITIVE ADVCOMPETITIVE ADVCOMPETITIVE ADVCOMPETITIVE ADVCOMPETITIVE ADVANTANTANTANTANTAGEAGEAGEAGEAGE
Welchia exploits two common vulnerabilities to infect new
systems: the recent RPC DCOM vulnerability (MS03-026)
already used by Win32/Blaster; and the NTDLL overflow
from March 2003 (MS03-007) that the world came to know
as the ‘WebDAV’ vulnerability, after one of the multiple
paths that lead to its exploitation. (Indeed, Welchia uses the
IIS 5.0 WebDAV functionality to exploit the latter
vulnerability.)

The use of multiple buffer overflow exploits to spread is
new to Win32 worms (although it has been used in the
Linux world by worms like Millen, Ramen or Adore). For
Welchia, the use of multiple vectors is a competitive
advantage in its fight against Blaster, because the pool of
potential targets is increased compared to Blaster.

As a result of Welchia patching some machines against
the RPC DCOM vulnerability, the digital environment
becomes tougher for both Blaster and Welchia, but Welchia
still enjoys a large base of unpatched IIS systems, giving
it the edge in a ‘survival of the fittest’ race between the
two worms.

ECOLOGICAL NICHEECOLOGICAL NICHEECOLOGICAL NICHEECOLOGICAL NICHEECOLOGICAL NICHE
After starting the TFTP server service that was created upon
installation, and preparing the attack buffers for both of its
exploits, Welchia starts its infection cycle, which has four
phases targeting various ranges of IP addresses with
different methods.

Before each attack phase, Welchia checks if its host is
connected to the Internet by attempting to resolve the DNS
name ‘microsoft.com’ to an IP address. If it can do so, it
carries on with the attack, otherwise it waits 10 minutes and
checks again.

The first attack phase targets the class-B network of the host
with the RPC DCOM exploit. The class-B sized network is
scanned linearly from top to bottom. Each IP address in this
range is pinged. If the machine replies to the ping, the worm
attempts to exploit it.

The second phase targets three class-B-sized networks (i.e.
about 200,000 IP addresses) located nearby the host class-B
with the RPC DCOM exploit.

The third phase targets one class-B-sized network, picked
randomly from a hard-coded list of 76 target networks, with
the WebDAV exploit. The target networks, most of which
belong to Chinese organizations, were probably pre-scanned
to find vulnerable machines. The WebDAV exploit carried
by Welchia works only on some double-byte character
platforms, which correlates with the geographic distribution
of these targets.

Finally, in the fourth phase, the worm randomly selects
either the RPC DCOM exploit or the WebDAV exploit and
uses it against 65,536 random IP addresses. The addresses
are selected from the following class-A network ids:
60 to 66, 128 to 172, 192 to 200, 202, 203, 210, 211, 218,
219, 220.

During all of these attacks, the worm avoids IP addresses
containing the byte 0xc5, because it needs to patch the shell
code with the bytes of the IP address xored with 0x99.
Since 0xc5 xored with 0x99 would be 0x5c, which turns out
to be the backslash character (‘\’), the worm needs to avoid
using it in both exploits, because they both involve over-
long paths. As a consequence, the lucky few with IP
addresses containing 197 (0xc5) will never be attacked!

SPLSPLSPLSPLSPL

When a machine is successfully exploited, be it with the
RPC DCOM exploit or the WebDAV exploit, a
connect-back shell code is executed on the victim. Unlike
Blaster, which uses a binding shell code, Welchia expects
the victim to open a connection to the attacking instance of
the worm. The attacking instance binds a server that
provides commands to the remote shell.

The server port was meant to be random in the range
666 to 765, but on most Windows systems the port ends up
being 707 all the time. This is because the worm is calling
srand() on the current tick count when the main thread
starts, and then calls rand() from the server thread.

The random seed being a Thread Local Storage value on
most versions of MSVCRT.DLL, the random number
generator is practically uninitialized and always returns 41
on the first call (666 + 41 = 707). (For a description of
Thread Local Storage, see VB, June 2002 p.4.)

VIRUS BULLETIN www.virusbtn.com

1212121212 OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003

Once a connection is established between the attacking
instance and the remote shell, the shell command server on
the attacking side issues some commands whose purpose is
to make the victim download the worm through a TFTP
transfer.

Unlike Blaster, Welchia does not implement its own TFTP
server. Instead it carries around a TFTP server when it
spreads. However, if Welchia comes to a new machine that
has a file named tftpd.exe in the %system%\dllcache
directory (this file is usually present on server flavours of
Windows 2000), it will abandon the old TFTP server and
snatch this new executable to carry around.

RPC VAMPIRERPC VAMPIRERPC VAMPIRERPC VAMPIRERPC VAMPIRE

The RPC DCOM exploit in Welchia is a stack buffer
overflow very similar to that used in Blaster. The hard-
coded return address to a ‘call ebx’ instruction used to
hijack control is specific to Windows XP systems.

The exploit uses a connect-back shell code that opens a
connection to the attacking machine, spawns a ‘cmd’
process whose input and output get associated with the
socket connected to the attacker, and finally calls
ExitThread().

The use of the ExitThread() API instead of the
ExitProcess() API (used by the Blaster shell code) ensures
that the RPC service survives the attack. Thus, machines
infected by Welchia will not present the same symptoms as
those machines infected by Blaster (unexpected rebooting,
unavailability of some services, and so on …)

IMP SPIRALIMP SPIRALIMP SPIRALIMP SPIRALIMP SPIRAL

Welchia’s WebDAV exploit hijacks an exception
handler on the stack by overflowing a buffer in
RtlDosPathNameToNtPathName_U (as do most published
WebDAV exploits). From KiUserExceptionDispatcher,
control goes to a ‘call ebx’ instruction in a ‘well-known’
data area of the inetinfo process (the same ‘well-known’
area to which we referred in our previous VB article on
Blaster, see VB, September 2003, p.10). Details on the
KiUserExceptionDispatcher function and how it relates to
exception handler hijacking, can be found in Péter Ször and
Bruce McCorkendale’s article on CodeRed (see VB,
September 2001, p.4).

Register ebx is then pointing to the hijacked exception
record on the stack, one entry in a series of eight 8-byte
exception records. Interpreted as CPU instructions, this
series of exception records forms a ramp of pushes and pops
designed to avoid execution of the exception handler
addresses. Eventually, control flows to the beginning of a

first-stage shellcode. (See figure 1 for a diagram of the
exploit phases.)

The exception record data are supplied as %u
Unicode-encoded characters in the request URL. The
Unicode-encoded characters are properly decoded only on
double-byte character systems. In a typical US-English
Windows 2000 setup, question marks are substituted for the
Unicode-encoded characters, and the attack results in a
Denial of Service against IIS.

Interestingly, this WebDAV exploit uses a chain of three
consecutive shell codes. It may seem suboptimal at first
glance, because one shell code would be enough to achieve
the same goal, but it results from a desire to separate the
shell code functionality into reusable components. (Indeed,
variants of the first-stage decoder, described shortly, were
published previously.)

Once the control flow of IIS is hijacked, the first-stage shell
code (supplied as Unicode-encoded characters) gets control,
locates and decodes the second-stage shell code and jumps
to it.

The second-stage shell code is encoded as a stream of
lowercase letters that gets expanded by IIS, from ASCII to

Figure 1: WebDAV exploit diagram.

VIRUS BULLETIN www.virusbtn.com

1313131313OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003OCTOBER 2003

Unicode, by inserting a zero byte in between consecutive
letters. Each letter encodes four bits of information (a
nibble). The first-stage shell code thus decodes one
expanded dword into one byte of second-stage shell code.

The purpose of the second-stage shell code is to locate the
third-stage and final shell code (shared between the RPC
and WebDAV exploits). To achieve this, the second-stage
shell code sets up an exception handler and strides through
the process memory space, starting at 1 megabyte, in
16 kb increments (with 4 kb hops in case of page faults),
looking for the ramp of Ns that constitutes most of the
attack URL.

Once the ramp is found, the second-stage shell code scans
forward byte-by-byte for the ‘YXYX’ marker that indicates
the entry-point of the third-stage shell code, then jumps to
this entry-point.

The third-stage shell code is the same as the one in the RPC
DCOM exploit, described above.

POPULAPOPULAPOPULAPOPULAPOPULATIONTIONTIONTIONTION

As we write this article, Welchia attacks show no sign of
slowing down. One of the authors of this article collected
data on the ping probes coming from systems infected with
Welchia (they can be distinguished from regular pings by
their peculiar payload).

The data in figure 2 were collected from 24 August 2003,
17h00 (PST) to 3 September 2003, 23h59 (PST) and
represent the number of hits from Welchia per one-hour
time slice coming to one DSL IP address.

Figure 2: Welchia pings statistics.

LEMMING OF THE YEARLEMMING OF THE YEARLEMMING OF THE YEARLEMMING OF THE YEARLEMMING OF THE YEAR

Come 2004 and Welchia will jump off the cliff. Each time
the worm starts it checks the current date, and if the year is
2004 it deletes its services and its files, and exits. It should
be emphasized that the worm only checks the date when it

starts, so that infected machines running unattended will not
automatically stop attacking new systems on new year’s eve.
The service needs to be restarted, or the machine rebooted,
for the wormicide to take place.

(As a side note, Peter Ferrie insists that lemmings do not
really jump off cliffs to commit suicide. He claims they are
in fact migrating to another island, and trying to get a head
start because they don’t swim very well …)

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

One genie jumped out of the bottle in about 1988, providing
an early warning to all of us. Did we all learn the lessons of
Morris worm? Sadly, it appears 15 years was enough to
forget the warning.

Evidently worms will use multiple exploits in the future and
will do so in more and more obfuscated ways. Under the
attack of more than one major worm outbreak it is going to
be increasingly difficult to provide accurate information
about worm attacks.

Learn about the vulnerabilities in time, foresee all possible
exploitation vectors (‘WebDAV’ was challenging in this
respect), and recognize the exploit code in the blink of an
eye. Without that, the information about protection might be
only half-right or worse.

We have already highlighted the importance of worm
blocking techniques. Not surprisingly, the basic principles
to stop these attacks are the same for Morris, Blaster or
Welchia (for both exploits) – however their description is
beyond the scope of this article.

Will the entire Core Wars move to real networks in the form
of new worm attacks? You could protect yourself, or play
the ignorant for yet another 15 years. You decide!

Win32/Welchia

Size: 10,240 bytes.

Aliases: W32.Welchia.Worm,
W32/Nachi.worm,
WORM_MSBLAST.D, Lovsan.D,
W32/Nachi-A, Win32.Nachi.A,
Worm.Win32.Welchia.

Type: Exploits RPC DCOM vulnerability
(MS03-026) and WebDAV
vulnerability (MS03-007).

Payload: Removes Win32/Blaster.A, patches
some systems against MS03-026.

